Problem 1
Let An be any sequence of subsets of R(i) if An↑A then λ∗(An)↑λ∗(A)
(ii)λ∗(lim infAn)≤lim infn→∞λ∗(An), where lim infAn={x:x∈Anultimately}
solution:
(i)
Let Fn=⋃ni=1Ei, F=∪En,A=∪An, where En is measurable such that An⊂En, and En−An is negligible (it is easy to prove such En exists), clearly A⊂F,
Fn↑F, therefore λ∗(Fn)↑λ∗(F)
λ∗(An)≤λ∗(Fn)≤λ∗(An)+λ∗(Fn−An)≤λ∗(An)+n∑i=1λ∗(Ei−Ai)=λ∗(An)
λ∗(Fn)=λ∗(An)≤λ∗(A)≤λ∗(F), and since Fn↑F, we have λ∗(An)↑λ∗(A)
(ii)
Let Bn=⋂k≥nAk, then Bn↑B=lim infAn
λ∗(Bn)≤λ∗(An)⇒lim infn→∞λ∗(Bn)=λ∗(lim infAn)≤lim infn→∞λ∗(An)
The equality follows from (i)
Problem 2
For A⊂[a,b]⊂R, λ∗(A) is also called the exterior measure of A in [a,b] and is denoted λe(A), the interior measure of A in [a,b], denoted λi(A), is defined by the formulaλi(A)=(b−a)−λe([a,b]−A)in general, λi(A)≤λe(A) ; the set A is measurable if and only if λi(A)=λe(A)
solution:
⇒ is easy
⇐ We use λ∗ instead of λe denote I=[a,b], let J be any bounded interval λ∗(I)=λ∗(I∩A)+λ∗(I∩A′)=λ∗(I∩A∩J)+λ∗(I∩A∩J′)+λ∗(I∩A′∩J)+λ∗(I∩A′∩J′)=λ∗(I∩A∩J)+λ∗(I∩A′∩J)+λ∗(I∩A∩J′)+λ∗(I∩A′∩J′)≥λ∗(I∩J)+λ∗(I∩J′)=λ∗(I)
Therefore we have λ∗(I∩A∩J)+λ∗(I∩A′∩J)=λ∗(I∩J), and it is easy to see that λ∗(A∩J)+λ∗(A′∩J)=λ∗(J) Suppose S is a subset of R for every ε>0, there exists U,S⊂U=⋃Jn and ∑λ∗(Jn)<λ∗(S)+ε
λ∗(A∩S)+λ∗(A′∩S)≤λ∗(A∩U)+λ∗(A′∩U)≤∑λ∗(A∩Jn)+∑λ∗(A′∩Jn)=∑(λ∗(A∩Jn)+λ∗(A′∩Jn))=∑λ∗(Jn)<λ∗(S)+ε
Since ε is arbitrary, we can conclude that A is measurable
No comments:
Post a Comment