Problem 1
Let
An be any sequence of subsets of
R
(i) if
An↑A then
λ∗(An)↑λ∗(A)
(ii)
λ∗(lim inf, where
\liminf A_n=\{x:x\in A_n \mbox{ultimately}\}
solution:
(i)
Let
F_n=\bigcup_{i=1}^{n}E_i,
F=\cup E_n,A=\cup A_n, where
E_n is measurable such that
A_n\subset E_n, and
E_n-A_n is negligible (it is easy to prove such
E_n exists), clearly
A\subset F,
F_n\uparrow F, therefore
\lambda^*(F_n)\uparrow \lambda^*(F)
\begin{align}
\lambda^*(A_n)\leq\lambda^*(F_n)&\leq\lambda^*(A_n)+\lambda^*(F_n-A_n)\\
&\leq\lambda^*(A_n)+\sum_{i=1}^{n}\lambda^*(E_i-A_i)\\
&= \lambda^*(A_n)
\end{align}
\lambda^*(F_n)=\lambda^*(A_n)\leq \lambda^*(A)\leq \lambda^*(F), and since
F_n\uparrow F, we have
\lambda^*(A_n)\uparrow \lambda^*(A)
(ii)
Let
B_n=\bigcap_{k\geq n}A_k, then
B_n\uparrow B=\liminf A_n
\lambda^*(B_n)\leq \lambda^*(A_n)\Rightarrow \liminf\limits_{n\to\infty} \lambda^*(B_n)=\lambda^*(\liminf A_n)\leq \liminf\limits_{n\to\infty} \lambda^*(A_n)
The equality follows from (i)
Problem 2
For A\subset [a,b]\subset \mathbb{R},
\lambda^*(A) is also called the exterior measure of A in
[a,b] and is denoted
\lambda_e(A), the interior measure of A in
[a,b], denoted
\lambda_i(A), is defined by the formula
\lambda_i(A)=(b-a)-\lambda_e([a,b]-A)in general,
\lambda_i(A)\leq\lambda_e(A) ; the set A is measurable if and only if
\lambda_i(A)=\lambda_e(A)
solution:
\Rightarrow is easy
\Leftarrow
We use
\lambda^* instead of
\lambda_e denote
I=[a,b], let
J be any bounded interval
\begin{align*}
\lambda^*(I)&=\lambda^*(I\cap A)+\lambda^*(I\cap A')\\
&=\lambda^*(I\cap A\cap J)+\lambda^*(I\cap A\cap J')+\lambda^*(I\cap A'\cap J)+\lambda^*(I\cap A'\cap J') \\
&=\lambda^*(I\cap A\cap J)+\lambda^*(I\cap A'\cap J)+\lambda^*(I\cap A\cap J')+\lambda^*(I\cap A'\cap J')\\
&\geq \lambda^*(I\cap J)+\lambda^*(I\cap J')\\
&=\lambda^*(I)
\end{align*}
Therefore we have
\lambda^*(I\cap A\cap J)+\lambda^*(I\cap A'\cap J)=\lambda^*(I\cap J), and it is easy to see that
\lambda^*(A\cap J)+\lambda^*(A'\cap J)=\lambda^*(J)
Suppose
S is a subset of
\mathbb{R} for every
\varepsilon>0, there exists
U,S\subset U=\bigcup J_n and
\sum \lambda^*(J_n)<\lambda^*(S)+\varepsilon
\begin{align*}
\lambda^*(A\cap S)+\lambda^*(A'\cap S)&\leq\lambda^*(A\cap U)+\lambda^*(A'\cap U)\\
&\leq \sum\lambda^*(A\cap J_n)+\sum\lambda^*(A'\cap J_n)\\
&=\sum(\lambda^*(A\cap J_n)+\lambda^*(A'\cap J_n))\\
&=\sum\lambda^*(J_n)\\
&<\lambda^*(S)+\varepsilon
\end{align*}
Since
\varepsilon is arbitrary, we can conclude that A is measurable
Problem 3
If A is a Lebesgue-measurable subset of \mathbb{R} such that \lambda(A)>0, then the difference set D=\{a-b:a,c\in A\} is a neighborhood of 0, that is, (-\delta,\delta)\subset D for some
\delta>0.