Processing math: 27%

Tuesday, November 19, 2013

Linear Algebra

Problem 1

Prove that if TL(V) is normal, then
nullTk=nullT and rangeTk=rangeT

Solution:
easy to check that nullTnullTk
to prove an inclusion in the other direction, suppose that vnullTk
Tkv=T(Tk1v)=0Tk1vnullT and Tk1vrangeTk1rangeT
but V=nullT(nullT)=nullTrangeT=nullTrangeT
the third equality holds because T is normal
Tk1vnullTrangeTTk1v=0, inductively, we have Tv=0
This shows that nullTknullT, completing the proof that nullT=nullTk

Now we are going to show that rangeTk=rangeT
rangeT=rangeT=(nullT)=(nullTk)=range(Tk)=rangeTk
first equality holds because T is normal, third equality is come from the previous proof, the last equality holds because Tk is normal

Thursday, November 7, 2013

Lebesgue Measure

Problem 1

Let An be any sequence of subsets of R
(i) if AnA then λ(An)λ(A)
(ii)λ(lim inf, where \liminf A_n=\{x:x\in A_n \mbox{ultimately}\}

solution:
(i)
Let  F_n=\bigcup_{i=1}^{n}E_i, F=\cup E_n,A=\cup A_n, where E_n is measurable such that A_n\subset E_n, and E_n-A_n is negligible (it is easy to prove such E_n exists), clearly A\subset F,
F_n\uparrow F, therefore \lambda^*(F_n)\uparrow \lambda^*(F)
\begin{align} \lambda^*(A_n)\leq\lambda^*(F_n)&\leq\lambda^*(A_n)+\lambda^*(F_n-A_n)\\ &\leq\lambda^*(A_n)+\sum_{i=1}^{n}\lambda^*(E_i-A_i)\\ &= \lambda^*(A_n) \end{align}
\lambda^*(F_n)=\lambda^*(A_n)\leq \lambda^*(A)\leq \lambda^*(F), and since F_n\uparrow F, we have \lambda^*(A_n)\uparrow \lambda^*(A)
(ii)
Let B_n=\bigcap_{k\geq n}A_k, then B_n\uparrow B=\liminf A_n
\lambda^*(B_n)\leq \lambda^*(A_n)\Rightarrow \liminf\limits_{n\to\infty} \lambda^*(B_n)=\lambda^*(\liminf A_n)\leq \liminf\limits_{n\to\infty} \lambda^*(A_n)
The equality follows from (i)

Problem 2

For A\subset [a,b]\subset \mathbb{R}, \lambda^*(A) is also called the exterior measure of A in [a,b] and is denoted \lambda_e(A), the interior measure of A in [a,b], denoted \lambda_i(A), is defined by the formula
\lambda_i(A)=(b-a)-\lambda_e([a,b]-A)in general, \lambda_i(A)\leq\lambda_e(A) ; the set A is measurable if and only if \lambda_i(A)=\lambda_e(A)

solution:
\Rightarrow is easy
\Leftarrow We use \lambda^* instead of \lambda_e denote I=[a,b], let J be any bounded interval \begin{align*} \lambda^*(I)&=\lambda^*(I\cap A)+\lambda^*(I\cap A')\\ &=\lambda^*(I\cap A\cap J)+\lambda^*(I\cap A\cap J')+\lambda^*(I\cap A'\cap J)+\lambda^*(I\cap A'\cap J') \\ &=\lambda^*(I\cap A\cap J)+\lambda^*(I\cap A'\cap J)+\lambda^*(I\cap A\cap J')+\lambda^*(I\cap A'\cap J')\\ &\geq \lambda^*(I\cap J)+\lambda^*(I\cap J')\\ &=\lambda^*(I) \end{align*}
Therefore we have \lambda^*(I\cap A\cap J)+\lambda^*(I\cap A'\cap J)=\lambda^*(I\cap J), and it is easy to see that \lambda^*(A\cap J)+\lambda^*(A'\cap J)=\lambda^*(J) Suppose S is a subset of \mathbb{R} for every \varepsilon>0, there exists U,S\subset U=\bigcup J_n and \sum \lambda^*(J_n)<\lambda^*(S)+\varepsilon
\begin{align*} \lambda^*(A\cap S)+\lambda^*(A'\cap S)&\leq\lambda^*(A\cap U)+\lambda^*(A'\cap U)\\ &\leq \sum\lambda^*(A\cap J_n)+\sum\lambda^*(A'\cap J_n)\\ &=\sum(\lambda^*(A\cap J_n)+\lambda^*(A'\cap J_n))\\ &=\sum\lambda^*(J_n)\\ &<\lambda^*(S)+\varepsilon \end{align*}
Since \varepsilon is arbitrary, we can conclude that A is measurable 

Problem 3

If A is a Lebesgue-measurable subset of \mathbb{R} such that \lambda(A)>0, then the difference set D=\{a-b:a,c\in A\} is a neighborhood of 0, that is, (-\delta,\delta)\subset D for some \delta>0.